

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

How to Create a Game with Phaser 3

By Pablo Farias Navarro

Software Developer and Course Designer

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

Table of Contents

Introduction

Learn by making your first game

Tutorial requirements

Development environment

Setting up your local web server

Hello World Phaser 3

Scene life-cycle

Bring in the sprites!

Coordinates

The Player

Detecting input

Moving the player

Treasure hunt

A group of dragons

Bouncing enemies

Colliding with enemies

Camera shake effect

Fading out

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

Introduction

Making amazing cross-platform games is now easier than it’s ever been thanks to Phaser, an

Open Source JavaScript game development library developed by Richard Davey and his team

at Photonstorm. Games developed with Phaser can be played on any (modern) web browser,

and can also be turned into native phone apps by using tools such as Cordova.

Learn by making your first game

The goal of this tutorial is to teach you the basics of this fantastic framework (version 3.x) by

developing the “Frogger” type of game you see below:

You can download the game and code here. All the assets included were produced by our team

and you can use them in your own creations.

Learning goals

● Learn to build simple games in Phaser 3

● Work with sprites and their transforms

● Main methods of a Phaser scene

● Utilize groups to aggregate sprite behavior

● Basic camera effects (new Phaser 3 feature)

https://academy.zenva.com/product/html5-game-phaser-mini-degree/
https://phaser.io/
https://gamedevacademy.org/phaser-3-tutorial/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

Tutorial requirements

● Basic to intermediate JavaScript skills

● Code editor

● Web browser

● Local web server

● Tutorial assets to follow along

● No prior game development experience is required to follow along

Development environment

The minimum development environment you need consists in a code editor, a web browser and

a local web server. The first two are trivial, but the latter requires a bit more explanation. Why is

it that we need a local web server?

When you load a normal website, it is common that the content of the page is loaded before the

images, right? Well, imagine if that happened in a game. It would indeed look terrible if the

game loads but the player image is not ready.

Phaser needs to first preload all the images / assets before the game begins. This means, the

game will need to access files after the page has been loaded. This brings us to the need of a

web server.

https://academy.zenva.com/product/html5-game-phaser-mini-degree/
https://gamedevacademy.org/phaser-3-tutorial/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

Browsers, by default, don’t let websites just access files from your local drive. If they did, the

web would be a very dangerous place! If you double click on the index.html file of a Phaser

game, you’ll see that your browser prevents the game from loading the assets.

That’s why we need a web server to server the files. A web server is a program that handles

HTTP requests and responses. Luckily for us, there are multiple free and easy to setup local

web server alternatives!

Setting up your local web server

The simplest solution I’ve found is a Chrome application named (surprisingly) Web Server for

Chrome. Once you install this application, you can launch if from Chrome directly, and load your

project folder.

https://academy.zenva.com/product/html5-game-phaser-mini-degree/
https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en
https://chrome.google.com/webstore/detail/web-server-for-chrome/ofhbbkphhbklhfoeikjpcbhemlocgigb?hl=en

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

You’ll be able to navigate to this folder by typing the web server URL into your browser.

Hello World Phaser 3

Now that our web server is up and running, let's make sure we’ve got Phaser running on our

end. You can find the Phaser library here. There are different manners of obtaining and

including Phaser in your projects, but to keep things simple we’ll be using the CDN alternative.

I’d recommend you use the non-minified file for development – that will make your life easier

when debugging your game.

More advanced developers might want to divert from these instructions and use a more

sophisticated development environment setup and workflow. Covering those is outside of the

https://academy.zenva.com/product/html5-game-phaser-mini-degree/
http://phaser.io/download/stable

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

scope of this tutorial, but you can find a great starting point here, which uses Webpack and

Babel.

In our project folder, create a index.html file with the following contents:

Now create a folder named js, and inside of it, our game file game.js:

What we are doing here:

● We are creating a new scene. Think of scenes as compartments where the game action

takes place. A game can have multiple scenes, and in Phaser 3 a game can even have

multiple open scenes at the same time (check out this example)

● It’s necessary to tell our game what the dimensions in pixels will be. Important to

mention this is the size of the viewable area. The game environment itself has no set

size (like it used to have in Phaser 2 with the “game world” object, which doesn’t exist on

Phaser 3).

● A Phaser game can utilize different rendering systems. Modern browsers have support

for WebGL, which in simple terms consists in “using your graphic card to render page

content for better performance”. The Canvas API is present in more browsers. By setting

https://academy.zenva.com/product/html5-game-phaser-mini-degree/
https://github.com/nkholski/phaser3-es6-webpack/
http://labs.phaser.io/edit.html?src=src%5Cscenes%5Cmultiple%20scenes%20from%20instances.js

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

the rendering option to “AUTO”, we are telling Phaser to use WebGL if available, and if

not, use Canvas.

● Lastly, we create our actual game object.

If you run this on the browser and open the console you should see a message indicating that

Phaser is up and running:

Scene life-cycle

In order for us to add the first images to our game, we’ll need to develop a basic understanding

of the Scene life-cycle:

● When a scene starts, the init method is called. This is where you can setup parameters

for your scene or game.

● What comes next is the preloading phaser (preload method). As explained previously,

Phaser loads images and assets into memory before launching the actual game. A great

feature of this framework is that if you load the same scene twice, the assets will be

loaded from a cache, so it will be faster.

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

● Upon completion of the preloading phase, the create method is executed. This one-time

execution gives you a good place to create the main entities for your game (player,

enemies, etc).

● While the scene is running (not paused), the update method is executed multiple times

per second (the game will aim for 60. On less-performing hardware like low-range

Android, it might be less). This is an important place for us to use as well.

There are more methods in the scene life-cycle (render, shutdown, destroy), but we won’t be

using them in this tutorial.

Bring in the sprites!

Let’s dive right into it and show our first sprite, the game background, on the screen. The assets

for this tutorial can be downloaded here. Place the images in a folder named “assets”. The

following code goes after :

● Our game background image “background.png” is loaded. We are giving this asset the

label “background”. This is an arbitrary value, you could call it anything you want.

● When all images are loaded, a sprite is created. The sprite is placed in x = 0, y = 0. The

asset used by this sprite is that with label “background”.

Let’s see the result:

https://academy.zenva.com/product/html5-game-phaser-mini-degree/
https://gamedevacademy.org/phaser-3-tutorial/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

Not quite what we wanted right? After all, the full background image looks like so:

Before solving this issue let’s first go over how coordinates are set in Phaser.

Coordinates

The origin (0,0) in Phaser is the top left corner of the screen. The x axis is positive to the right,

and y axis is positive downwards:

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

Sprites by default have their origin point in the center, box on x and y. This is an important

difference with Phaser 2, where sprites had what was called an anchor point on the top-left

corner.

This means, when we positioned our background on (0,0), we actually told Phaser: place the

center of the sprite at (0,0). Hence, the result we obtained.

To place the top-left corner of our sprite on the top-left corner of the screen we can change the

origin of the sprite, to be it’s top-left corner:

The background will now render in the position we want it to be:

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

The Player

Time to create a simple player we can control by either clicking or touching on the game. Since

we’ll be adding more sprites, let’s add these to preload so we don’t have to modify it again later:

We’ll then add the player sprite and reduce its size by 50%, inside of create:

● We are placing our sprite at x = 40. For y, we are placing it in the middle of the game

viewport. this gives us access to our current scene object, this.sys.game gives us

access to the global game object. this.sys.game.config gives us the configuration we

defined when initiating our game.

● Notice we are saving our player to the current scene object (this.player). This will allow

us to access this variable from other methods in our scene.

● To scale down our player we using the setScale method, which applies in this case a

scale of 0.5 to both x and y (you could also access the scaleX and scaleY sprite

properties directly).

Our Valkyrie is ready for some action! We need to develop next the ability for us to move her

with the mouse or touchscreen.

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

Detecting input

Phaser 3 provides many ways to work with user input and events. In this particular game we

won’t be using events but will just check that the “active input” (be default, the mouse left button

or the touch) is on.

If the player is pressing/touching anywhere on the game, our Valkyrie will walk forward.

To check for input in this manner we’ll need to add an update method to our scene object, which

will normally be called 60 times per second (it is based on the requestAnimationFrame method,

in less performing devices it will be called less often so don’t assume 60 in your game logic):

You can verify that this works by placing a console.log entry in there.

● this.input gives us access to the input object for the scene. Different scenes have their

own input object and can have different input settings.

https://academy.zenva.com/product/html5-game-phaser-mini-degree/
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

● This code will be true whenever the user presses the left button (clicks on the game

area) or touches the screen.

Moving the player

When the input is active we’ll increase the X position of the player:

this.playerSpeed is a parameter we haven’t declared yet. The place to do it will be the init

method, which is called before the preload method. Add the following before the preload

definition (the actual declaration order doesn’t matter, but it will make our code more clear). We

are adding other parameters as well which we’ll use later:

Now we can control our player and move it all the way to the end of the visible area!

Treasure hunt

What good is a game without a clear goal (take that, Minecraft!). Let’s add a treasure chest at

the end of the level. When the player position overlaps with that of the treasure, we’ll restart the

scene.

Since we already preloaded all assets, jump straight to the sprite creation part. Notice how we

position the chest in X: 80 pixels to the left of the edge of the screen:

In this tutorial we are not using a physics system such as Arcade (which comes with Phaser).

Instead, we are checking collision by using a utility method that comes in Phaser, which allows

us to determine whether two rectangles are overlapping.

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

We’ll place this check in update, as it’s something we want to be testing for at all times:

● The getBounds method of a sprite gives us the rectangle coordinates in the right format.

● Phaser.Geom.Intersects.RectangleToRectangle will return true if both rectangles passed

overlap

Let’s declare our gameOver method (this is our own method, you can call it however you want –

it’s not part of the API!). What we do in this method is restart the scene, so you can play again:

A group of dragons

Life is not easy and if our Valkyrie wants her gold, she’ll have to fight for it. What better enemies

than evil yellow dragons!

What we’ll do next is create a group of moving dragons. Our enemies will have a back and forth

movement – the sort of thing you’d expect to see on a Frogger clone 🙂

In Phaser, a group is an object that allows you to create and work with multiple sprites at the

same time. Let’s start by creating our enemies in, yes, create:

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

● We are creating 5 (repeat property), sprites using the asset with label dragon.

● The first one is placed at (110, 100).

● From that first point, we move 80 on x (stepX) and 20 on Y (stepY), for every additional

sprite.

● For future reference, the members of a group are called “children”.

The dragons are too big. Let’s scale them down:

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

● Phaser.Actions.ScaleXY is a utility that reduces the scale by 0.5, to all the sprites that

are passed in.

● getChildren gets us an array with all the sprites that belong to a group

This is looking better:

Bouncing enemies

The up and down movement of the dragons will follow the logic described below. When making

games and implementing mechanics, it is in my opinion always good to outline them and

understand them well before attempting implementation:

● Enemies have a speed, a maximum and a minimum vale of Y they will reach (we already

have all of this declared in init).

● We want to increase the position of an enemy until it reaches the maximum value

● Then, we want to reverse the movement, until the minimum value is reached

● When the minimum value is reached, go back up.

Since we have basically an array of enemies, we’ll iterate through this array, in update, and

apply this movement logic to each enemy (note: speed hasn’t been declared yet, so assume

each enemy has a value setup for this property):

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

This code will make the dragons move up and down, provided speed was set. Let’s take care of

that now. In create, after scaling our dragons, let’s give each a random velocity between 1 and

2:

● Phaser.Actions.Call allows us to call a method on each array element. We are passing

this as the context (although not using it).

Now our up and down movement is complete!

Colliding with enemies

We’ll implement this using the same approach we took for the treasure chest. The collision

check will be performed for each enemy. It makes sense to utilize the same for loop we’ve

already created:

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

Camera shake effect

A really cool feature of Phaser 3 is that of camera effects. Our game is playable but it will be

nicer if we can add some sort of camera shake effect. Let’s replace gameOver by:

● The camera will be shaken for 500 milliseconds

● After 500 ms we are restarting the scene by using this.time.delayCall, which allows you

to execute a method after some time

There is a problem with this implementation, can you guess what it is?

After colliding with an enemy, the gameOver method will be called many times during the 500

ms. We need some sort of switch so that when you run into a dragon, the gameplay freezes.

Add the following at the end of create:

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

The code below goes at the very start of update, so that we only process it if the player is alive:

Our gameOver method:

Now the method won’t be activated many times in a row.

Fading out

Before saying goodbye we’ll add a fadeout effect, which will commence half-way through the

camera shakeup:

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

This book is brought to you by Zenva - Enroll in our HTML5 Game Development Mini-Degree to learn

and master Phaser

© Zenva Pty Ltd 2018. All rights reserved

● At time 250 ms we are starting our fade out effect, which will last for 250 ms.

● This effect will leave the game black, even after restarting our scene, so we do need to

call this.cameras.main.resetFX(); to go back to normal for that, add this to the bottom of

the create method, or the screen will remain black after you restart the scene:

That’s all for this tutorial! Hope you’ve found this eBook helpful.

https://academy.zenva.com/product/html5-game-phaser-mini-degree/

